OOF – A New Programming Metaphor


The “OOF” or “Object-Oriented Fail” family of languages is intended to deliver reliable, deterministic, 100% failure rates to public institutions seeking to implement social programs to increase nationwide stress, eliminate all disposable income of and decrease the average quality-of-life for all members of the middle class.


In the past, OO languages have been forced to choose between single- and multiple-inheritance models. OOF languages, however, dispense with this model by introducing the concept of “half inheritance”: derived classes will inherit precisely half of the properties of their base classes, selected by a pseudorandom number generator at runtime. This ensures that no defined class can be represented as a directed acyclic graph or UML model. By choosing the revolutionary half-inheritance model, all “design-up-front” development methodologies will be rendered instantly obsolete.


Instead of employing memory management, OOF languages must, in the initialization routine of the garbage injector, use operating system calls to allocate and pre-initialize the largest block of free heap available. Access to objects and variables must be aligned on “n”-byte boundaries, where “n” represents the current day of the month. This will provide consistency in the number of available variables and/or objects in a given program on a given day. Programmers should take care to design their usage of variables and objects with the lowest day-number of any given month in mind. All access to heap memory is through pointers in the code segment, which are to be managed by the garbage injector.


The garbage injector’s prime responsibility is to modify the addresses of all such aforementioned pointers using the same runtime pseudorandom number generator as used by the half-inheritance system. Data pointed to will be copied from its original location to its new location in ascending order. No mechanism is provided to examine the usage of the new location prior to overwriting its data with the result of the pending copy operation. This mandatory operation will run during idle CPU cycles, and result in a consistently inconsistent execution environment for all system and user programs.


The garbage collector will address the inconsistencies of the OOF program’s execution environment, as ensured by the garbage injector. Its operation is simple: any access to variables or objects will trigger a call into system BIOS routines which will reboot the entire computer, thus eliminating any inconsistencies in the program’s state, and indeed, the program’s ability to store and retrieve state at all.


We recommend that the runtime library for any OOF language be web-enabled in such a manner as to crash or otherwise disable the end user’s web user agent when any request is made for an OOF program or subroutine. Ideally, this disabling mechanism should also initiate a low-level format of the user’s fixed storage devices. It is recommended that any government implementation of an OOF system be paired with extensive subsidies for large computer repair establishments, such as The Geek Squad. This will provide Β maximal economic benefit to all.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s